

Discrete Mathematics

DEC 18

Computer Engineering (Semester 3)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

(2) Attempt any **three** from the remaining questions.

(3) Draw neat diagrams wherever necessary.

1.a. Two dice are rolled. find the probability that the sum is i) Equal to 1

ii) Equal to 4

ii) less than 13	(6 marks)
 1.b. Use the laws of logic to show that [(p⇒q)[(p⇒q) ^ ~q] ⇒⇒ ~p is a tautology 1.c. Determine the matrix of the partial order of divisibility on the set A. Draw the Hasse diagram of the poset. Indicate those which are chains. i) A = {1,2,3,5,6,10,15,30} 	(6 marks)
ii) B = {3,6,12,36,72}	(8 marks)

2.a. Find t	he compleme	nt of each element in D42D42	(6 marks)
2.b. Let Q	be the set of	positive rational numbers which can be expressed	
in the form	m of 2a2a 3b3	b , where a and b are integers.	
Prove tha	t algebraic str	ucture (Q , .) is a group.	
Where . is multiplication operation.			(6 marks)
2.c. Define	e isomorphic g	raphs. Show whether the following are isomorphic o	r not
а	b 55	a'	

(8 marks)

www.lastmomenttuitions.com

3.a. Determine which of the following graph contains an Eulerian or Hamiltonian circuit.

G2 c' b' e' $d g c$	
Fig (b) Fig(b)	(6 marks)
3.b. For all sets A,X and Y show that A x $(X \cap \cap Y) = (A \times X) \cap \cap (A \times Y)$ 3.c. Let $f(x) = x + 2$, $g(x) = x - 2$, and $h(x) = 3x$ for $x \in \in \mathbb{R}$, where R = set of real numbers .	(6marks)
Find (g , f) , (f , g) , (f , f) , (g , g) , (f , h) , (h , g) , (h , f) , (f , h , g)	(8 marks)
4.a. Let R is a binary relation. Let $S = \{(a,b), (a, c) \in C \}$ and (c, b) $\in C \}$ for some c} Show that if R is an equivalence relation then S is also an equivalence relation. 4.b. Determine the generating function of the numeric function arar, Where i) arar = $3r3r + 4r + 14r + 1$, $r \ge 0$ ii) arar = 5, $r \ge 0$	(6 marks) (6 marks)
4.c. Consider the (3,6) encoding function $e : B3 \Rightarrow B6B3 \Rightarrow B6$ defined by $e(000) = 000000 e(001) = 001100 e(010) = 010011 e(011) = 011111$	(0 marks)
e(100) = 100101 e(101) = 101001 e(110) = 110110 e(111) = 111010	
Decode the following words relative to a maximum likelihood decoding function.	
i) 000101 ii) 010101	(8 marks)
5.a. Determine the number of positive integers n where $1 \le n \le 100$ and n is not divisible by 2,3, or 5. 5.b. Use mathematical induction to show that $1+5+9++(4n-3) = n (2n-1)$	(6 marks) (6 marks)
5.c. Find the greatest lower bound and least upper bound of the set $\{3, 9, 12\}$ and $\{1, 2, 4, 5, 10\}$ if they exists in the poset $(z+z+, /)$. where / is the relation of divisibility.	(8 marks)

6.a. Let A = {1 , 2, 3 , 4} and Let	
$R = \{(1,1) (1,2) (1,4) (2,4) (3,1) (3,2) (4,2) (4,3) (4,4)\}.$	
Find transitive closure by Warshall's algorithm.	(6 marks)
6.b. Let H = {[0]6,[3]6[0]6,[3]6} find the left and right cosets in group Z6Z6.	
Is H a normal subgroup of closure by Warshall's algorithm.	(6 marks)
6.c. Find the complete solution of the recurrence relation	
an+2an–1an+2an–1 = n + 3 for n ≥≥ 1 and with a0=3a0=3	(8 marks)