

Digital Logic Design and Analysis

Dec 18

Computer Engineering (Semester 3)

Total marks: 80 Total time: 3 Hours

INSTRUCTIONS

(1) Question 1 is compulsory.

(2) Attempt any **three** from the remaining questions.

(3) Draw neat diagrams wherever necessary.

 1.a. Convert decimal number 576.24 into binary, base-9,Octal, hexadecimal system. 1.b. Construct hamming code for 1010 using odd parity. 1.c. Convert (-89)10(-89)10 to its equivalent Sign Magnitude, 1's complement 	(4 marks) (4 marks)
and 2's Complement Form. 1.d. Perform(BC5)H(BC5)H - (A2B)H(A2B)H without converting to any other base 1.e. Prove De Morgans theorem	(4 marks) (4 marks) (4 marks)
 2.a. Given the logic expression : A+B⁻C⁻+ABD⁻+ABCDA+B⁻C⁻+ABD⁻+ABCD 1. Express it in standard SOP form. 	
2. Draw K-map and simplify.	
3. Draw logic diagram using NOR gates only.	(10 marks)
2.b. Reduce using Quine McClusky method and realise the operations using only NAND gates. F(A,B,C,D)=∐M(0,2,3,6,7,8,9,12,13)F(A,B,C,D)=∐M(0,2,3,6,7,8,9,12,13)	(10 marks)
3.a. Design a 4-bit binary to gray code converter.3.b. Design a 4-bit BCD adder using IC 7483 and necessary gates.	(10 marks) (10 marks)
 4.a. Implement the following logic function using all 4:1 multiplexers with the select inputs as 'B','C','D','E' only. F(A,B,C,D,E)=Σm(0,1,2,3,6,8,9,10,13,15,17,20,24,30 4.b. Convert a SR flip-flop to JK flip-flop. 	(10 marks) (10 marks)

5.a. Design a mod-6 synchronous counter using T FF.5.b. Explain the operation of 4-bit universal shift register.

(10 marks) (10 marks)

Write short notes on any two

6.a. VHDL6.b. TTL and CMOS logic families6.c. 4-bit Magnitude compartor.6.d. 3 to 8 line decoder.

(10 marks) (10 marks) (10 marks) (10 marks)